Fathy Abdel-Kader Amer ${ }^{\text {a }}$, Metwally Hammouda ${ }^{\text {a }}$, Abdel-Aziz Sayed El-Ahl ${ }^{\text {af }}$, and Bakr
Fathy Abdel-Wahab ${ }^{\text {b }}$

> a: Chemistry Department, Faculty of Science, Mansoura university, Mansoura, Egypt.
> b: Applied Organic Chemistry Department, National Research Center, Dokki, Giza, Egypt
> \# : the present address: Chemistry Department, Faculty For Teachers, Umm Al-Qura University,
> Kingdom of Saudi Arabia
> E-mail: Bakrfatehy@yahoo.com
> Received January 27,2008*

This review presents a survey of the synthetic methods and reactions of 3-pyrrolidinones $\mathbf{I}(\mathrm{R}=\mathrm{H}$, alkyl, acyl, ester; $R_{1}=H$, alkyl, cyano, ester, etc). 3-Pyrrolidinones are synthetically versatiles substrate, as they can be used for synthesis of a large variety of heterocyclic compounds, such as indoles and 5-deazapteroic acid analogues and as a raw material for drug synthesis. The high reactivity of an active methylene group next to the carbonyl of the pyrrolidine ring is useful for various syntheses.
J. Heterocyclic Chem., 45, 1549 (2008).

INTRODUCTION

From a synthetic viewpoint, 3-pyrrolidinones occupy an important position in the synthesis of various heterocyclic systems. The Pyrrolidine ring is a component of many alkaloids, many of which display diverse and potent biological activities. Also, they are key building blocks for a wide variety of synthetic targets ranging from biologically active molecules to liquid crystals and conducting polymers. Despite this importance, 3-pyrrolidinones have not been previously reviewed. Several methods for preparation of 3-pyrrolidinones have been reported, including Michael condensation followed by base-catalyzed intramolecular Dieckmann condensation. Also, several reactions belonging to both the carbonyl and active methylene groups are mentioned, finally some main applications of 3-pyrrolidinone compounds are reported.

1. SYNTHESIS OF 3-PYRROLIDINONES

Generally, 3-pyrrolidinones are prepared via Michael condensation followed by base-catalyzed intramolecular condensation of the Dieckmann type.

1.1. N-(Unsubstituted)-3-pyrrolidinones

Ethyl glycinate hydrochloride was reacted with acrylonitrile in aqueous KOH at $60{ }^{\circ} \mathrm{C}$, and the resulting Michael adduct was subsequently treated with di-tertbutyl dicarbonate to produce protected cyano ester 1. The ester 1 was smoothly cyclized to the cyano ketone 2 by sodium ethoxide. Treatment of $\mathbf{2}$ with $\mathrm{HCl} / \mathrm{MeOH}$ gave 4 -cyano-3-pyrrolidinone 3 as depicted in Scheme1 [1].

Scheme 1

Michael addition of ethyl glycinate to ethyl acrylate followed by Dieckmann condensation and decarboxylation gave 3-pyrrolidinone. HBr 4 (Scheme 2) [2].

Scheme 2

Alkylation of α-ethyl α-phenyl- β-alanine ethyl ester with ethyl chloroacetate afforded the amino diester 8 . Dieckmann condensation of the latter, in the presence of NaH in toluene, yielded 2-carbethoxy-4-ethyl-4-phenylpyrrolidin-3-one 9 , which underwent hydrolysis and decarboxylation upon treatment with dilute HCl to give 4-ethyl-4-phenylpyrrolidin-3-one 10 (Scheme 3) [3].

Scheme 3

Alkylation of α-ethyl α-phenyl- β-alanine ethyl ester with ethyl chloroacetate afforded the amino diester 8. Dieckmann condensation of the latter, in the presence of NaH in toluene, yielded 2-carbethoxy-4-ethyl-4-phenylpyrrolidin-3-one 9, which underwent hydrolysis and decarboxylation upon treatment with dilute HCl to give 4-ethyl-4-phenylpyrrolidin-3-one 10 (Scheme 4) [3].

Scheme 4

1.2. Synthesis of \boldsymbol{N}-alkyl-3-pyrrolidinones

The cyclization of diethyl N -(2-carbethoxyethyl)- N methylaspartate 11 using sodium hydride in benzene, sodium in toluene, or sodium ethoxide in ethanol, gave exclusively the six-membered ring product, 1-methyl-2,3-dicarbethoxy-4-piperidone 12. Under non-reversible conditions (potassium t-butoxide in toluene at $-20^{\circ} \mathrm{C}$) 1 -methyl-2-carbethoxymethyl-4-carbethoxy-3-pyrrolidinone 13 was the primary product (Scheme 5) [4].

N-Methyl-2-allyl-3-pyrrolidinone $\mathbf{1 5}$ was prepared by addition of $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{TTP})(\mathrm{CO})\right]$ to diazo compound 14 (Scheme 6) [5, 6].

Scheme 6

14

15

Cyclization of diethyl N -(2-carbethoxyethyl)- N -methylaspartate $\mathbf{1 6}$ under non-reversible conditions (t - BuOK in toluene at $-20^{\circ} \mathrm{C}$) led to 1-methyl-2-carbethoxymethyl-4-carbethoxy-3-pyrrolidinone 17 (Scheme 7) [7].

Scheme 7

Adding ethyl α-methylaminobutyrate to ethyl acrylate gave the diester 18. Which upon closure by sodium ethoxide followed by acid hydrolysis and decarboxyaltion gave 2-ethyl-1-methyl-3-pyrrolidinone 19 (Scheme 8) [8].

5-Hydroxy-1,2,5-trimethyl-2-phenylpiperidin-4-one 21 and 1-methyl-5-phenylpyrrolidin-3-one 22 were obtained by the reaction of acryloyloxiranes $\mathbf{2 0}$ with methylamine (Scheme 9) $[9,10]$.

Cyclization of the dinitrile $\mathbf{2 3}$ in t-butyl alcohol in the presence of a catalytic amount of sodium t-butoxide gave the cyclic imino-nitrile $\mathbf{2 4}$, which was present as an enamine $\mathbf{2 5}$. Hydrolysis of this product gave the 3-pyrrolidinone derivative 26 (Scheme 10) [11].

α, β-Unsaturated aminoketones 27, have been prepared by Claisen-Schmidt condensation of α-aminoketones with aromatic aldehydes. The products where $\mathrm{R}_{4}=\mathrm{H}$ were converted to the corresponding 1,2,2-trialkyl-5-aryl-3pyrrolidinones 28, by thermal cyclization $\left(\mathrm{R}_{1}=\mathrm{CH}_{3}\right.$, $\mathrm{C}_{2} \mathrm{H}_{5}$, iso- $\mathrm{C}_{3} \mathrm{H}_{7}$., $\left.\mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}, \mathrm{Cl}\right)($ Scheme11) [12].

Scheme 11

28

1-Methyl-pyrrolidin-3-one $\mathbf{3 2}$ has been prepared by reaction of N-methyl- β-alaninonitrile and anhydrous potassium carbonate with ethyl bromoacetate, which afforded [(2-cyano-ethyl)-methyl-amino]-acetic acid ethyl ester 29, which under further alcoholysis gave the intermediate 30. Dieckmann condensation of $\mathbf{3 0}$ with 60% sodium hydride in anhydrous toluene at $0^{\circ} \mathrm{C}$ gave 1 -methyl-3-oxo-pyrrolidine $\mathbf{3 2}$ via the intermediate ethyl 1-methyl-4-oxopyrrolidine-3-carboxylate $\mathbf{3 1}$ by hydrolysis with 6 NHCl (Scheme12) [13,14].

Scheme 12

Condensation of ethyl acrylate with α-carbethoxyethylmethylamine gave the diester 33. This upon closure by sodium hydride and toluene gave the keto ester 34. Acid hydrolysis and decarboxylation of 34 gave 1,2-dimethyl-3-pyrrolidinone 35 (Scheme13) [15].

Adding of methylamine to acrylonitrile gave β-cyanoethylmethylamine 36. Condensation of $\mathbf{3 6}$ with acetone cyanohydrin gave the dinitrile $\mathbf{3 7}$, which in turn could be cyclized to enaminonitrile $\mathbf{3 8}$ as indicated in Scheme 14. Hydrolysis of $\mathbf{3 8}$ with HCl gave 1,2,2-trimethyl-3pyrrolidinone 39 [16].

Scheme 14

Treatment of diphenyl cyclopropenone with imines gave 1-methyl-2,3-diphenyl-2-pyrrolin-4-ones 40 (R1 = $\mathrm{Me}, \mathrm{Ph}, p$-tolyl), which under LiAlH_{4} reduction gave 41 ($\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$) (Scheme15) [17].

Scheme 15

1-Bromobut-3-en-2-one reacted with a primary amine in the presence of potassium carbonate to afford 3pyrrolidines $42(\mathrm{R}=\mathrm{Bn}$; t - Bu) through an intramolecular Michael reaction (Scheme16) [18].

Scheme 16

Condensation of ethyl chloroacetate with ethyl β butylaminopropionate gave the diester 43. Ring closure of 43 with sodium ethoxide or potassium metal followed by hydrolysis and decarboxylation gave 1-butyl-3-pyrrolidinone 44 (Scheme17) [8].

Scheme 17

Adding isopropylamine to ethyl acrylate gave β -carbethoxyethyl-isopropylamine, which was alkylated with ethyl chloroacetate to the diester 45. Cyclization of 45 in sodium methoxide followed by acid hydrolysis and decarboxylation gave 1-isopropyl-3-pyrrolidinone 46 (Scheme18) [19].

Scheme 18

Adding primary amines to acrylonitrile gave β-cyano alkyl ethyl amines. Alkylation of the latter with ethyl bromoacetate gave the cyano esters 47 . Hydrolysis of 47 with $\mathrm{HBr} / \mathrm{EtOH}$ afforded the diesters 48. Cyclization of 48 with sodium hydride in xylene followed by acid hydrolysis and decarboxylation gave N -alkyl-3-pyrrolidinones ($\mathrm{R}=$ benzyl, phenylethyl, 2-benzoylethyl) 49 (Scheme19) [20,21].

Scheme 19

Adding α-bromoester to β-cyanoethylmethylamine gave the cyano esters $\mathbf{5 0}$. Acid hydrolysis of $\mathbf{5 0}$ with $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$ gave the diesters 51. Cyclization of $\mathbf{5 1}$ in ethanolic sodium ethoxide afforded the keto ester 52. Acid hydrolysis followed by decarboxylation of $\mathbf{5 2}$ gave 3-pyrrolidinones ($\mathrm{R}=\mathrm{H}, \mathrm{Me}$) 53 (Scheme 20) [22].

Scheme 20

Condensation of chloro ester 54 with diester 55 followed by subsequent Dieckmann cyclization and decarboxylation gave the 3-pyrrolidinone derivative 56 (Scheme 21) [23].

Treatment of methyl ester 57 with sodium amide and hexamethylphosphoramide gave 1-methyl-2-(o-chloro-phenyl)-3-pyrrolidinone 58 (Scheme 22)[24].

Scheme 22

Ethyl N-(β-carbethoxyethyl)-5-oxo-2-pyrrolidinecarboxylate 59 prepared from L-(+)-glutamic acid and acrylonitrile which was hydrolyzed and esterified in absolute ethanol containing concentrated sulfuric acid. Cyclization of $\mathbf{5 9}$ with sodium ethoxide produced ethyl 1,5-dioxopyrrolizidine-2-carboxylate 60. Decarboxylation of the pyrrolizidine $\mathbf{6 0}$ in hot hydrochloric acid was accompanied by lactam ring hydrolysis, so that the product was the 3-oxopyrrolidine acid 61 (Scheme 23) [25].

Scheme 23

60

Successive cyanoethylation and acylation of the amino group, followed by Dieckmann cyclization yielded 2substituted 1-acyl-4-cyano-3-oxopyrrolidines $62(\mathrm{R}=\mathrm{H}$, Me, benzyl; R` = Me, Ph) (Scheme 24) [26].

Scheme 24

Condensation of N -acetyl ethyl glycinate with ethyl acrylate in pure sodium hydride and dry benzene gave N -acetyl-4-carbethoxy-3-pyrrolidinone 63. On the other hand, heating of ethyl β-carbethoxymethyl aminopropionate in pyridine and acetic anhydride gave the acetyl diester 64, which cyclized in Na /xylene to give 63 (Scheme 25) [27].

Reduction of 2-methyl-3-benzylidene-1-pyrroline $\mathbf{6 5}$ with NaBH_{4} gave 2-methyl-3-benzylidenepyrrolidine 66. Ozonolysis of 66 in acetic acid and decomposing of the resulting ozonide with zinc dust gave 1-acetyl-2-methyl-3-pyrrolidinone 67 (Scheme 26) [28].

Scheme 26

Michael condensation of ethyl hippurate with ethyl cinnamate gave the keto ester 68, hydrolysis and decarboxylation of $\mathbf{6 8}$ gave 1-benzoyl-2-phenyl-4-pyrrolidinone 69 (Scheme 27) [29]

Scheme 27

1-(Benzyloxycarbonyl)-2-(methoxycarbonyl)-3-oxopyrrolidine 71 was prepared by addition of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ to a solution of the α-diazo β-keto ester 70 (Scheme 28) [30].

Scheme 28

1.4. \boldsymbol{N}-Carbethoxy-3-pyrrolidinones

Ethyl N-ethoxycarbonyl-S-(2-ethoxycarbony1ethyl)glycinate $72\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{COOEt}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ under nonequilibrating conditions, both ethyl 1-ethoxycarbonyl-4-oxopyrrolidine-3-carboxylate 73 and ethyl 1-ethoxy-carbonyl-3-oxopyrrolidine-2-carboxylate 74 have been obtained in roughly equal yield (Scheme 29) [31].

Ethyl 3-oxopyrrolidine-1-carboxylate 76 was prepared from ethyl 3-(ethoxycarbonyl)methylamino)propanoate

75 by reaction firstly with ethyl chloroformate and potassium carbonate in dichloromethane followed by intramolecular Dieckmann condensation in sodium ethoxide and benzene and finally hydrolysis of the ester group (Scheme 30) [32,33].

Scheme 30

β-Alanine reacted with ethyl chloroformate in sodium hydroxide and then esterified to give ethyl N -ethoxy-carbonyl- β-aminopropionate 77 . Reaction of 77 with diethyl fumarate afforded 78, which cyclized in benzene and sodium and then hydrolyzed to afford ethyl 2-(ethoxycarbonyl)methyl)-3-oxopyrrolidine-1-carboxylate 79 (Scheme 31) [34].

Scheme 31

Condensation of DL- α-alanine ethyl ester and ethyl chloroformate gave the diester $\mathbf{8 0}$. Addition of $\mathbf{8 0}$ to ethyl acrylate in sodium hydride and benzene gave the keto diester 81. Acid hydrolysis and decarboxylation of 81 gave 1-carbethoxy-2-methyl-3-pyrrolidinone 82 (Scheme 32) [35].

Scheme 32

82
81

Heating of ethyl chloroformate with the diester $\mathbf{8 3}$ in aqueous solution of sodium carbonate gave the triester $\mathbf{8 4}$. Cyclization of $\mathbf{8 4}$ in Na /xylene gave diethyl 4-oxo-pyrrolidin-1,3-dicarboxylate 85 (Scheme 33) [36].

1,2-Dicarbethoxy-4-isopropyl-3-pyrrolidinone 87 was prepared from the cyclization of the triester 86 in Na /toluene (Scheme 34) [37].

Scheme 34

Ethyl 3-oxopyrrolidine-1-carboxylate $\mathbf{8 9}$ was prepared from pyrrolidin-3-ol $\mathbf{8 8}$ by reaction with ethyl chloroformate followed by oxidation with potassium chromate (Scheme 35) [38].

Scheme 35

1.5. N-Aryl-3-pyrrolidinones

The condensation of 4-bromo-1,2-epoxybutane with a slight excess of an alkyl 4-aminobenzoate under argon in a sealed reaction flask at $120{ }^{\circ} \mathrm{C}$ for $2-4 \mathrm{~h}$ afforded N -[4'-(alkoxycarbonyl)-phenyl]-3-pyrrolidinol 90 which will undergo Moffatt oxidation (with either trifluoroacetic acid or 99% phosphoric acid as the acid catalyst) to give 3pyrrolidinone 91 ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}, t-\mathrm{Bu}$) (Scheme 36) [39].

Scheme 36

Alkylation of methyl 4-aminobenzoate with cis-1,4-dichloro-2-butene in methanol containing sodium acetate and a catalytic amount of potassium iodide (Finkelstein conditions) gave an excellent yield of the 3-pyrroline 92. Hydroboration-oxidation of $\mathbf{9 2}$ afforded 3-pyrrolidinol 93 which underwent oxidation to the 3-pyrrolidinone 94 (Scheme 37) [39].

Scheme 37

93
94

Treatment of methyl p-aminobenzoate with dimethyl sulfide, followed immediately by the addition of N chlorosuccinimide in dichloromethane at $-25{ }^{\circ} \mathrm{C}$, gave sulfilimine 95 . Oxidation of 95 in situ at $0^{\circ} \mathrm{C}$ to methyl p nitrosobenzoate 96 was accomplished by addition of 1.2 equiv of m-chloroperbenzoic acid. Diels-Alder reaction of 96 with 2-methoxy-1,3-butadiene at $0^{\circ} \mathrm{C}$ led to dihydro$2 \mathrm{H}-1,2$-oxazine 97 . Hydrolysis of $\mathbf{9 7}$ by 1 N hydrochloric acid at room temperature afforded the tetrahydro- $2 \mathrm{H}-1,2-$ oxazinone 98 , hydrogenation of $\mathbf{9 8}$ over Pd / C led to the amino alcohol which on dehydrative ring closure gave 3pyrrolidinone 99 (Scheme 38) [40].

Scheme 38

Pyrrolidin-3-ol reacted with t-butyl 4-fluorobenzoate in DMSO in the presence of sodium carbonate to give 3pyrrolidinol 100 which was oxidized to 3-pyrrolidinone 101 (Scheme 39) [41].

An intermolecular cycloaddition of C,N-diphenylnitrone with allene afforded 3-pyrrolidinone 104 $\left(\mathrm{R}_{1}=\mathrm{COPh}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}\right.$ or $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$) (Scheme 41) [43].

Scheme 41

Condensation of p-anisidine and ethyl acrylate gave ethyl N-(4`-methoxyphenyl)- β-aminopropionate 105, which alkylated with ethyl bromoacetate to give the diester 106, compound $\mathbf{1 0 6}$ was subsequently converted into 107 by intramolecular cyclization with base. Acid hydrolysis of the keto ester $\mathbf{1 0 7}$ followed by decarboxyaltion gave 1-(4'-methoxyphenyl)-3-pyrrolidinone 108 (Scheme 42) [44,45].

Scheme 39

Dipolar cycloaddition of nitrones with electrondeficient allenes gives 5-exo-ethylene substituted isoxazolidines 102. Smooth rearrangement of $\mathbf{1 0 2}$ produced 3-pyrrolidinones 103 (Scheme 40) [42].

Reaction of α, β-unsaturated bromoketone 109 with primary arylamines gave 1-arylamino-1,4-diphenyl-3-buten-2-ones 110, which cyclized to 1-aryl-2,5-diphenyl-3-pyrrolidinones $111\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $4-\mathrm{OCH}_{3}-$ $\mathrm{C}_{6} \mathrm{H}_{4}$) by heating with diluted sulfuric acid (Scheme 43) [46,47].

Reaction of furfural with aniline in presence of conc. HCl gave 5-phenylaminomethyl-1-phenyl-3-pyrrolidinone 112 (Scheme 44) [48].

112

1,3-Dipolar cycloaddition of (phenylsulfonyl)propadiene with a nitrone in chloroform solution at room temperature gave 3-pyrrolidinone derivative 113 Scheme 45) [49].

1-(4-Alkyloxycarbonyl-phenyl)-3-pyrrolidinones 115 ($\mathrm{R}=\mathrm{H}, 3-\mathrm{Me}, 4-\mathrm{CN}, 4-\mathrm{NO}_{2}, 2-\mathrm{F}, 4-\mathrm{F}$, etc) were prepared by condensation of 1,4-dibromo-2-butanol with alkyl-paminobenzoate, followed by oxidation of 1-(4-alkyloxy-carbonyl-phenyl)-3-pyrrolidinols 114 by (DCC/pyridine/ DMSO/TFA) (Scheme 46) [50].

Scheme 46

The vinylsilane functionality in pyrroline 116 can be epoxidized with m-CPBA to produce epoxypyrrolidine 117. Subsequent treatment with aqueous HI solution at room temperature furnished desilylated 3-pyrrolidinone 118 (Scheme 47) [51].

Scheme 47

118

1.6. 3-Oxopyrrolidin-1-oxide

5,5-Dimethyl-1-pyrroline-1-oxide was converted either by SeO_{2} or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{ONO}$ into 3-oxo-1-pyr-roline-1-oxide 119, but the reaction is not general for other nitrones, three 3-carbethoxy-1-pyrroline-1-oxides $120\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Me}_{3} \mathrm{C}, \mathrm{H}\right)$ were prepared by base-catalyzed acylation of simple pyrroline oxide, and nitrosation of $\mathbf{1 2 0}$ $(\mathrm{R}=\mathrm{Ph})$ resulted in the formation of 3-oxopyrrolidine $\mathbf{1 2 1}$ (Figure 1) [52].

119

120

121

Figure 1

2. GENERAL CHARACTERISTICS

3-Pyrrolidinones 122 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{SO}_{2} \mathrm{CF}_{3}$) were considered as α-amino ketones afforded enolates
away from nitrogen under kinetic base, thermodynamic base and thermodynamic acid conditions (Figure 2) [53].

122
Figure 2

Electron-impact mass spectra of 3-pyrrolidinones show that the mechanism of the fragmentation varies with the substituent on the nitrogen atom; when this substituent is alkyl, fragmentation proceeds by two pathways; loss of CO to give an azetidine intermediate before breaking down further, or elimination of an unsaturated aliphatic amine with the formation of a cyclopropanone. When the N -substituent is aryl, the pathway involves elimination of other substituents and CO, then reaction of the aryl group with the heterocycle radical ion gives methylindole or dihydroquinoline ion intermediates [54].

3. REACTIONS

3.1. Reduction

3.1.1 Reduction to 3-pyrrolidinols

Reduction of 3-pyrrolidinones with lithium aluminium hydride or sodium bohydride afforded 3-pyrrolidinols 123 ($\mathrm{R}=$ alkyl; cycloalkyl and aryl) (Scheme 48) [18,39,55,56].

Scheme 48

Diethyl 4-oxopyrrolidine-1,3-dicarboxylate was reduced over PtO_{2} or Raney nickel as a catalyst to diethyl 4-hydroxypyrrolidine-1,3-dicarboxylate 124 (Figure 3)[36].

124
Figure 3

5-Phenylaminomethyl-1-phenyl-3-hydroxypyrrolidine $\mathbf{1 2 5}$ was obtained by reduction of compound $\mathbf{1 1 2}$ over Raney nickel (Figure 4)[48].

125
Figure 4

1,2-Dimethyl-3-pyrrolidinone 35, 2-ethyl-2-phenyl-3pyrrolidinone $\mathbf{7}$ and 4-ethyl-4-phenyl-3-pyrrolidinone $\mathbf{1 0}$ were reduced with NaBH_{4} to 1,2-dimethyl-3-pyrrolidinol 126, 2-ethyl-2-phenyl-3-pyrrolidinol 127 and 4-ethyl-4-phenyl-3-pyrrolidinol 128 (Figure 5)[3,15].

126

127

128

Figure 5

1,5-Diphenyl-3-pyrrolidinone was reduced with NaBH_{4} to a mixture of cis- and trans-1,5-diphenyl-3-hydroxypyrrolidine 129 (Figure 6) [57].

129
Figure 6

Ethyl tetrahydro-2-oxo-2H-furo[3,2-b]pyrrole-4(5H)carboxylate 131 was prepared by reduction of ethyl 2-(ethoxycarbonyl)methyl)-3-oxopyrrolidine-1-carboxylate 130 with hydrogen and platinum or by sodium borohydride (Scheme 49) [34].

Scheme 49

3.1.2. Wolf-Kishner reduction

The Wolff-Kishner reduction of 1,2,5-triphenyl-3pyrrolidinone gave a mixture of meso and racemic $1,2,5-$ triphenylpyrrolidine 132 (Figure 7)[30].

132
Figure 7

3.1.3. Reduction amination

cis-1,5-Diphenyl-3-dimethylaminopyrrolidine 133 was prepared from the corresponding 3-pyrrolidinone by conversion to oxime then to oxime acetate with acetic anhydride. Stereoselective reduction of oxime acetate with boron hydride led to the cis-amine, which was converted to the trimethylammonium derivative with methyl iodide, then reduced with LiAlH_{4} (Figure 8)[57,58].

133
Figure 8

3.2. With organometallic reagents

3.2.1. Grignard reaction

1-Benzyl-3-phenyl-3-pyrrolidinol 134 was prepared by the action of PhMgBr on 1-benzyl-3-pyrrolidinone (Figure 9) [19].

134
Figure 9

In a similar manner, 1-butyl-3-phenyl; 1-methyl-3-(4'methoxphenyl); 1-isobutyl-3-(4'-methoxyphenyl) and 1-benzyl-3-(4'-methoxyphenyl) 3-pyrrolidinols were prepared [25].

Similarly, 1-acetyl-3-phenyl-3-pyrrolidinol 135 and 1-carbethoxy-3-substituted-3-pyrrolidinols $\mathbf{1 3 6}$ ($\mathrm{R}=$ phenyl; p-chlorophenyl; p-methoxyphenyl; p-benzylphenyl; 2-thienyl and 3,5-diphenyl) were prepared (Figure 10) [19,20].

135

136

Figure 10

3-(2'-Furyl)-1-phenylethyl-3-pyrrolidinol $\mathbf{1 3 7}$ was prepared by reaction of 3-pyrrolidinone with 2-furyl magnesium bromide (Figure 11) [26].

137
Figure 11

3-Alkynyl-3-pyrrolidinols $\mathbf{1 3 8}(\mathrm{R}=\mathrm{H}$ and Ph$)$ have been prepared by alkylation of 3-pyrrolidinone derivatives by Favorskii ethylation or the Grignard Lotsitch method (Scheme 50) [69].

Ethyl 3-oxopyrrolidine-1-carboxylate reacted with 4chlorophenylmagnesium chloride in dry ether to afford the tert-alcohol 139 (Scheme 51) [38].

3.2.2. With organolithium compounds

Reaction of 1,2-dimethyl-3-pyrrolidinone 35 with PhLi gave 1,2-dimethyl-3-phenyl-3-pyrrolidinol 140 (Scheme 52) [60].

Scheme 52

35

Reaction of 2-, 3- or 4-bromopyridine with n-butyllithium in dry ether at $-78^{\circ} \mathrm{C}$ and reaction of the resuling pyridyl-lithiums with 1-carboethoxy-3-pyrrolidinone gave isomeric ethyl 3-(2-, 3-, or 4-pyridyl)-3-hydroxypyrrolidine-1-carboxylates 141 (Scheme 53) [47,61].

141

3-Substituted-3-hydroxypyrrolidines $\left(\mathrm{R}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{Et}\right.$; Z $=\mathrm{OH}, \mathrm{CHPh}_{2} ; \mathrm{OH}, 10,11$-dihydro- 5 H -dibenzo $[a, d]$ cyclo-hepten-5-yl, $\mathrm{CPh}_{2}, 10,11$-dihydro- 5 H -dibenzo[a,d]cyclo-hepten-5-ylidene; 5,6,7,12-tetrahydrodibenzo $[a, d]$ cycloo-cten-12-ylidene) $\mathbf{1 4 2}$ were prepared by reaction of 3-pyrrolidinones with a suitable hydrocarbon in the presence of BuLi followed by optional dehydration (Figure 12) [46].

142
Figure 12

Lithiation of 2-bromo-6-substituted naphthalene followed by stereoselective addition to 3-pyrrolidinone derivative 35 gave a racemic mixture of 3-naphthyl-3hydroxypyrrolidine hydrochloride $143\left(\mathrm{R}=\mathrm{H}, \mathrm{F}, \mathrm{OCH}_{3}\right)$ (Scheme 54) [48].

Scheme 54

3.2.3. With Organophosphorus reagents

3-Pyrrolidinone reacted with trimethyl phosphonoacetate in the presence of sodium hydride to give (Z or E) methyl 4-[(3,4-dichlorophenyl)acetyl]-3-[[3-(2-methoxy-2-oxoethy1idene)-1-pyrrolidinyl]methyl]-1-piperazinecarboxylate 144 (Scheme 55) [62].

Scheme 55

3.3. With hydrazines and hydrazides

N-Alkyl-3-pyrrolidinylhydrazones 145 ($\mathrm{R}=\mathrm{Me}$, iso- Pr , $\mathrm{Bu}, \mathrm{Et}, \mathrm{Me} ; \mathrm{R} 1=$ iso- $\mathrm{Pr}, \mathrm{Ac})$ were prepared by reaction of N -alkyl-3-pyrrolidinones with hydrazines (Figure 13)[16].

145
Figure 13

3-Pyrrolidinones $\left(\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}, ~ 4-\mathrm{Me}-\mathrm{OC}_{6} \mathrm{H}_{4}\right)$ reacted with hydrazines $(\mathrm{R}=\mathrm{H}, \mathrm{Ph})$ to afford amino pyrrolopyrazoles 147 via hydrazones 146 by heating in polyphosphoric acid (Scheme 56) [63].

Scheme 56

3-Pyrrolidinones ($\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}, \quad 4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$) reacted with 2 -cyanoacetohydrazide to give amino pyrrolopyrazole 148 (Scheme 57) [63].

148

3.4. With aldehydes

Condensation of 3-pyrrolidinone derivatives with substituted benzaldehyde in trimethylacetic acid (pivalic acid), triethylborane and hexane gave 4-benzylidine-3pyrrolidinone derivatives $149\left(\mathrm{R}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{OH}\right.$, alkyl, alkoxy; $\mathrm{R}=\mathrm{R}_{1} \neq \mathrm{H} ; \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{OH} ; \mathrm{R}_{4}-\mathrm{R}_{7}=$ alkyl, aryl, (subs.) aralkyl) (Scheme 58) [64].

Scheme 58

N-protected 2,4-bis[(2-furyl)methylidene]pyrrolidine-3one 150 was prepared by reaction of N -protected-3pyrrolidinone with furan-2-carboxaldehyde (Scheme 59) [65].

3.5. Condensation with amines

1-Benzyl-3-benzylaminopyrrolidines 151 ($\mathrm{R}=\mathrm{H}$ and alkyl) were obtained from condensation of 3-pyrrolidinone derivatives with benzyl amine in toluene followed by hydrogenation (Scheme 60) [66].

Scheme 60

151

Spiro[N-benzylpyrrolidin-3',1-(1,2,3,4-tetrahydro- β carboline)]dihydrochloride 152 was prepared by the classical Pictet-Spengler reaction of tryptamine with N -benzyl-3-pyrrolidinone in n-butanol/ HCl (Scheme 61) [29].

Scheme 61

3.6. Condensation with diamines

The 5-deazapteroic acid analogues 153 and 154 have been prepared by several different strategies starting from 1-[4'-(tert-butoxycarbonyl)phenyl]-3-pyrrolidinone 99 (Figure 14) [36].

Figure 14

3.7. Reaction with hydroxylamine

1-Benzyl-3-pyrrolidinone reacts with $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$ in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to give the corresponding oxime 155. The hydrogenation of $\mathbf{1 5 5}$ in $\mathrm{NH}_{3}-\mathrm{MeOH}$ over Raney nickel gave 3-amino-1-benzyl pyrrolidine 156 (Scheme 62) $[37,67,68]$.

Scheme 62

3-Methoxyimino-4-aminomethylpyrrolidine derivative 157 was prepared from ethyl 1-benzyl-4-oxopyrrolidine-3-carboxylate by reaction with methoxyamine compound followed by reductive amination (Scheme 63) [69].

Scheme 63

4-Aminomethyl-3-methoxyiminopyrrolidinemethane sulfonate $\mathbf{1 5 9}$ was prepared from N-protected 4-cyano-3oxopyrrolidine by reaction with methoxyamine hydrochloride to afford N-BOC-4-cyano-3-methoxyiminopyrrolidine 158 which reacted with methanesulfonic acid followed by reduction (Scheme 64) [70].

Scheme 64

3.8. Reaction with ammonium salts

Treatment of 1-benzyl-3-pyrrolidinone with KCN and $\mathrm{NH}_{4} \mathrm{Cl}$ in 28% aqueous ammonia gave (\pm)-3-amino-1-benzyl-3-cyanopyrrolidine 160, subsequent hydrolysis of 160 with $48 \% \mathrm{HBr}$ gave (\pm)-1-benzyl curcurbitine 161 (Scheme 65) [71].

Scheme 65

Treatment of 1-acyl-4-cyano-3-oxopyrrolidines ($\mathrm{R}=\mathrm{H}$, Me , benzyl; $\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Ph}$) with ammonium formate afforded 2-substituted 1-acyl-3-amino-4-cyano-3pyrrolines 162; Condensation of $\mathbf{1 6 2}$ with guanidine yielded 7 -substituted 6-acyl-2,4-diamino-6,7-dihydro-5H-pyrrolo[3,4- d]pyrimidines 163 (Scheme 66) [26,45].

3.9. Reaction with N-chlorosuccinimide

Reaction of β-oxonitrones with electrophilic reagents takes place either at the oxygen atom of the nitrone group or at the carbon atom between the carbonyl and nitrone group. Thus, treating $164(\mathrm{R}=\mathrm{Me})$ with N-chlorosuccinimide in carbon tetrachloride gave chloro derivative 165 as the major product, and with excess reagent gave the dichloro derivative 166 as the main product (Figure 15) [72].

164

165

166

Figure 15

3.10. Reaction with isoquinoline derivatives

Reaction of 1-carbethoxymethyl-6,7-dimethoxy-1,2,3, 4-tetrahydroisoquinoline with 39 in toluene and in the presence of a catalytic amount of trifluoroacetic acid gave 8,16-diaza-2,3-dimethoxy-15,15,16-trimethylgona-1,3, 5(10),13-tetraen-12-one 167 (Scheme 67) [16].

Scheme 67

39

167

8,17-Diaza-17-acetylgona-1,3,5(10),13-tetraen-12-one 168 was synthesized from N-acetyl-3-pyrrolidinone and 1-carbethoxymethyl-1,2,3,4-tetrahydro-isoquinoline in toluene and with trifluoroacetic acid as a catalyst (Scheme 68) [16].

3.11. With allyl alcohols

Reaction of 3-pyrrolidinone in xylene with allyl alcohol in the presence of a catalytic amount of camphorsulfonic acid (CSA) and anhydrous sodium sulfate afforded ethyl 2-allyl-3-oxopyrrolidine-1-carboxylate $\mathbf{1 7 0}$ through an allyl enol ether intermediate 169 (Scheme 69) [32].

Scheme 69

170

3.12. Fischer indole synthesis

Polymethyl 1,2,3,4-tetrahydropyrrolo[3,4-b]indole 172 was prepared by reaction of $2,2,5,5$-tetramethyl-3pyrrolidinone with arylhydrazine. HCl to give the corresponding hydrazone 171 which on treatment with $\mathrm{EtOH} / \mathrm{HCl}$ afforded 172 (Scheme 70) [73].

Scheme 70

172

In a similar manner, $\mathbf{1 7 3}$ was prepared by reaction of β-naphthylhydrazine with the corresponding 3-pyrrolidinone (Scheme 71) [73].

1,2,3,4-Tetrahydropyrrolo[3,4-b]indoles $\mathbf{1 7 6}$ were prepared by condensation of 3-pyrrolidinone with p substituted phenylhydrazine to give the corresponding hyrazones $\mathbf{1 7 4}$, treatment of $\mathbf{1 7 4}$ with $\mathrm{H}_{3} \mathrm{PO}_{4}$ gave indole derivatives 175, which on treatment with arylbromide afforded $176\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}_{1}=\mathrm{H}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F} ; \mathrm{R}_{2}=\mathrm{H}\right.$, $\left.\mathrm{OCH}_{3}, \mathrm{~F}\right)$ (Scheme 72) [17].

Scheme 72

The Fischer cyclization of arylhydrazones of 3-pyrrolidinones afforded 1,2,3,4-tetrahydropyrrolo[3,4-b]indoles 177 ($\mathrm{R}=n$-butyl, benzyl, and cyclohexyl) (Scheme 73) [74].

Scheme 73

3.13. Friedlander condensation

A base-catalyzed Friedlander condensation of ethyl 2-(ethoxycarbonyl)methyl)-3-oxopyrrolidine-1-carboxylate with o-aminobenzaldehyde gave the tricyclic quinoline acid 178 (Scheme 74) [75-77].

Scheme 74

Friedlander condensation of o-aminobenzaldehyde and N-carbethoxy-3-pyrrolidinone gave ethyl 1H-pyrrolo[3,4-b]quinoline-2(3H)-carboxylate 179 (Scheme 75) [78].

Scheme 75

179

2,3-Dihydro-1H-pyrrolo[3,4-b]quinolines $\mathbf{1 8 0} \quad(\mathrm{R}=$ COCH_{3} and COOEt) are the key intermediate in the synthesis of camptothecin [pentacyclic alkaloid possessing anti-tumour activity], thus $\mathbf{1 8 0}$ was prepared by p-toluenesulphonic acid-catalyzed Friedlaender condensation of 3-pyrrolidinones with o-aminobenzaldehyde (Scheme 76) [49].

Scheme 76

The quinoline derivative 181 was prepared by cyclocondensation of 1-benzyl-3-pyrrolidinone and o-aminoacetophenone in $2 N \mathrm{HCl}$ (Scheme 77) [79, 80].

$1 H$-Pyrrolo[3,2-b]quinolines $182(\mathrm{R}=\mathrm{H}, \mathrm{Ac}, \mathrm{COOEt}$; $\mathrm{R} 1=\mathrm{H}, \mathrm{Me}, \mathrm{Ph} ; \mathrm{R} 2=\mathrm{H}, \mathrm{CHO}, \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{Ac} ; \mathrm{R} 3=$ $\mathrm{H}, \mathrm{MeO} ; \mathrm{R}_{4}=\mathrm{H}, \mathrm{MeO}, \mathrm{Cl} ; \mathrm{R}_{5}=\mathrm{H}, \mathrm{Ph}$.) were prepared by cyclocondensation of o-aminobenzaldehyde with 3pyrrolidinone derivatives (Scheme 78) [39].

Scheme 78

182

3.14. Knoevenagel reaction

Condensation of 1-(4'-methoxyphenyl)-3-pyrrolidinone 108 with malononitrile gave dicyanomethylene product 183 which readily polymerized. Lithiation of 183 with lithium diisopropylamide (LDA) in THF followed by treatment with (dimethylamino)methylenedichloride gave product 184 . Treating of $\mathbf{1 8 4}$ with $\mathrm{NH}_{3} / \mathrm{MeOH}$ in a sealed container at $150^{\circ} \mathrm{C}$ gave 6-amino-7-cyano-2-(4'-methoxy-phenyl)-2,3-dihydropyrrolo[3,4-c]pyridine 185 (Scheme 79) [44].

Esters of 1-[4'-(carboxy)phenyl]-3-pyrrolidinones 91 were condensed with cyanoacetamide in benzene, β alanine and acetic acid to give the Knoevenagl products 186 ($\mathrm{R}=\mathrm{Me}$, Et, t-Bu) (Scheme 80) [12,39].

Scheme 80

Condensation of 91 with cyanothioacetamide under Knoevenagel conditions (reflux in benzene in the presence of β-alanine and acetic acid) did not give the anticipated Knoevenagel product analogous to 186, but tetrahydrothieno[2,3-b]pyrrole 187 was obtained (Scheme 81) [10].

91

187

3.15. Michael Addition

Spiro-pyrrolo[3,2-b]-4-pyranyl-2-oxoindolines 188 and dicyanopyrrolo[3,2-b]-4-pyranes $\mathbf{1 8 9}$ were prepared from reaction of 3-pyrrolidinones with isatin-3-ylidiene ($\mathrm{R}=$ $\mathrm{CN}, \mathrm{COOEt})$ or arylidine malononitrile ($\mathrm{Ar} \mathrm{r}^{\prime}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$, $4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$) in ethanol catalyzed by piperidine (Scheme 82) [81].

Scheme 82

3.16. Schmidt rearrangement

3-Pyrrolidinones undergo Schmidt rearrangement conditions to afford hexahydropyrimidinones 190 ($\mathrm{R}=$ Me; OMe) (Scheme 83) [81].

Scheme 83

190

3.17. Dimerization

The indigo dye 4,4,4',4'-tetramethyl[2,2'-bipyrrolidinyl-idene]-3,3'-dione 191 was prepared by KCN dimerization of 4,4'-dimethyl-1-tosyl-3-pyrrolidinone (Scheme 84) [82].

Scheme 84

191

4. MEDICINAL APPLICATIONS

3-Pyrrolidinones used as a source of the D ring in the synthesis of diazasteroid groups such as 8,16 - and $8,17-$ diazasteroid systems [16]. 3-Amino pyrrolidine 192 (R1 = Et, benzyl; R2 $=\mathrm{H}, \mathrm{Me}$) used as the starting material in preparation of drugs (Figure 16) [67].

Figure 16

1-Substituted-3-hydroxypyrrolidines 193 ($\mathrm{R} 1=\mathrm{C} 1-10$ aliphatic hydrocarbonyl, aralkyl, aryl; R2= H and $\mathrm{C} 1-4$ alkyl) are useful as intermediate for drugs production (Figure 17)[83].

193
Figure 17

Pyrroloquinolines $\mathbf{1 7 8}$ can be used in biosynthesis of plant antitumor agents [76,78]. 4-[(Alkylamino)methyl]-furo[3,2-c]pyridine 194 is useful as selective K-Receptor Agonists (Figure 18) [84].

Figure 18

4-Substituted 1-(arylacetyl)-2-[(dialkylamino)methyl]piperazine $\mathbf{1 4 4}$ used as a potent new class of K-receptor agonist [62].
cis-N-(1-Benzyl-2-methylpyrrolidin-3-yl)-5-chloro-2-methoxy-4-(methylamino)benzamide (YM-09151-2) 195 demonstrates 13 times greater inhibitory effect on apomorphine-induced stereotyped behavior in rats than haloperidol (Figure 19)[67].

195

Figure 19

1-(2-(2-(Naphthalen-1-yl)ethoxy)cyclohexyl)pyrrolidin-3-ol 196 has been used as potential antiarrhythmic agent (Figure 20) [85].

196

Figure 20

3-Pyrrolidinone 197 ($\mathrm{R}=$ nicotinyl, quinaldyl, PhCO , $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NCO}, \quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH}_{3} \mathrm{CO}\right), \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{OCO}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCO}$) acts as inhibitors of HIV-1 replication (Figure 21) [86].

197

Compounds 198 ($\mathrm{X}=$ BOC-Protected L-amino acids Y $=\mathrm{CHOH}, \mathrm{C}=\mathrm{O}$) are used as HIV protease inhibitors (Figure 22) $[87,88]$.

198
Figure 22

Chiral 4-amino-2-methylpyrrolidine derivatives 199 have been used as intermediates for quinolone carboxylate antibacterials (Figure 23) [89]

199
Figure 23

The fluoroquinolone containing oxime-substituted(aminomethyl)pyrrolidine 200 acts as an antibacterial agent (Figure 24) [40,90-92].

Figure 24
(\pm) Curcurbitine 161 has antihistaminic or antiallergic activity [71]. The benzamide 201 acts as nervous system depressants [93], quinoline derivative $\mathbf{1 8 1}$ is useful as appetite depressants [79], and pyrrolidinyl naphthalene 143 has antinociceptive activity (Figure 25) [48].

Figure 25

4-Benzylidene-3-pyrrolidinone $\mathbf{1 4 9}$ acts as sunscreens, antioxidants and skin antinflammatories [64]. 6,7-Dihydropyrrolo[3,4-c]pyrido[2,3- d]pyrimidine derivatives 202 (R = alkyl, (un)substituted aryl, (un)substituted alkyl aryl; $\left.\mathrm{X}, \mathrm{Y}=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\right)$ used as potential anticancer agents (Figure 26) [94].

202

Figure 26

3-Substituted-3-hydroxypyrrolidines $\mathbf{1 4 2}$ have parasympthomimetic activity [46]. 3-Hydroxy-3-(substituted alkyl)pyrrolidines 203 ($\mathrm{Ar}_{1}=($ subs.)Ph or naphthyl; $\mathrm{A}=$
direct link to $\mathrm{X}, \mathrm{C} 1-4$ alkyne; $\mathrm{X}=\mathrm{O}, \mathrm{SO}, \mathrm{SO}_{2} ; \mathrm{Ar}_{2}=$ phenylene, pyridinyl, furanyl; $\mathrm{R}_{1}=\mathrm{C} 1-4$ alkyl; $\mathrm{R}_{2}=\mathrm{C} 1-4$ alkyl; $\mathrm{R}_{3}=\mathrm{H}, \mathrm{HO} ; \mathrm{n}=1,2$) act as 5-lipoxygenase inhibitors (Figure 27) [95].

203
Figure 27

The dextrorotatory diastereoisomer 204 was useful as vasodilator [96] or useful as antihypertensive and antianginol [97]. trans and cis-1,5-Diphenyl-3-dimethylaminopyrrolidines $\mathbf{1 3 3}$ were useful as histamine $\mathrm{H}_{1}-$ receptor antagonists (Figure 28) [57].

204
Figure 28

Morpholinoethoxypyrrolidine $\mathbf{2 0 5}$ acts as an antihypertensive agent [98]. The azolyl indole derivative 206 acts as $5-\mathrm{HT}_{1 \mathrm{D} \alpha}$ receptor agonists (Figure 29) [99].

Figure 29

Spiro(dihydrobenzofuran)pyrrolidines 207 ($\mathrm{R}=\mathrm{H}$, alkyl; R1= H, halo; $\mathrm{R}_{2}=\mathrm{H}$, alkyl, alkoxycarbonyl) exhibit analgesic and antihypertensive activity (Figure 30) [100].

Figure 30

4-Pyrimidinyl and 4-purinylpyrrolidin-3-ol nucleoside analogues 208, 209 and 210 exemplify a class of potential anticancer and antivirial agents (Figure 31) [101].

208

209
Figure 31

3-Pyrrolidinones 211 ($\mathrm{R}_{1}=$ nicotinyl, 2-quinoleyl; $\mathrm{R}_{2}=$ $\mathrm{H}, \mathrm{OH}, \mathrm{OMe}$) are considered to be useful as inhibitors of HIV-1 replication (Figure 32) [102,103].

Figure 32

Pyrrolidin-3-ol derivative 212 used as HIV protease inhibitors (Figure 33) [104].

212

Figure 33

Pyrrolidine oximes 213 ($\mathrm{R}=$ (un)substituted 3- or 5oxadiazolyl, a carbamoyl group; R1 = H, alkyl; R2 = aryl, heteroaryl, cycloalkyl, cycloalkenyl) are useful in treatment and/or prevention of preterm labor, premature birth and dysmenorrhea (Figure 34) [105].

213
Figure 34

The pyrrolidine 214 is used as Bax inhibitors and oxytocin antagonists (Figure 35) [106-109].

Figure 35

3-Aminomethyl-4-Z-methoxyiminopyrrolidine 215 is an intermediate in the production of the quinoline antibiotic gemifloxacin (Figure 36) [110].

Figure 36
(R)-1-(($1 R, 2 R$)-2-(3,4-Dimethoxyphenethyloxy)cyclo-hexyl)pyrrolidin-3-ol 216 can be used for treatment of arrhythmia (Figure 37) [111].

Figure 37

REFERENCES

[1] Hong, C.Y.; Kim, Y.K.; Chang, J. H.; Kim, S. H.; Choi, H.; Nam, D. H.; Kim Y. Z.; Kwak, J. H. J. Med. Chem. 1997, 40, 3584.
[2] Roglans, A.; Marquet, J.; Moreno-Manas, M. Synth. Commun. 1992, 22, 1249.
[3] Hirshfeld, A.; Taub, W. Tertrahedron 1972, 28, 1275.
[4] Augustine, R. L.; Zelawski, Z. S.; Rzalarek, D. H. J. Org. Chem. 1967, 32, 2257.
[5] Zhou, C. Y.; Yu, W. Y.; Chan, P. W. H.; Che, C. M. J. Org. Chem. 2004, 69, 7072.
[6] Clark, J. S.; Hodgson, P. B.; Goldsmith, M. D.; Street, L. J. J. Chem. Soc. Perkin Transl 2001, 24, 3312.
[7] Augustine, R.L.; Zelawski, Z.S.; Malarek, D.H. J. Org. Chem. 1967, 32, 2257.
[8] Leonard, N.J.; Fischer, F.E.; Barthel, E.; Figueras, J.; Wildman, W.C. J. Am. Chem. Soc. 1951, 73, 2371.
[9] Zvonok, A. M.; Biba, V. I.; Stanishevskii, L. S. Chem. Heterocycl. Compds. 1988, 24, 1113.
[10] Zvonok, A.M.; Biba, V.I.; Stanisheveskii, L.S. Khim. Geterotsikl. Soedin., 1988,10,1344; Chem. Abstr. 1989, 111, 39162q.
[11] Cavalla, J.F. J. Chem. Soc. 1962, 4664.
[12] Hennion, G. F.; King G. G. J. Chem. Eng. Data 1967, 12, 275.
[13] Collina, S.; Rossi, D.; Loddo, G.; Barbieri, A.; Lanza, E.; Linati, L.; Alcaro, S.; Gallelli, A.; Azzolina, O. Bioorg. Med. Chem. 2005, 13, 3117 .
[14] Cavall, J. F.; Davoll. J.; Dean, M. J.; Franklin, C. S.; Temple, D. M., J. Med. Pharm. Chem. 1961, $4,1$.
[15] Ryan, C.W.; Ainsworth, C. J. Org. Chem. 1962, 27, 2901.
[16] Yamazaki, T.; Matoba, K.; Isomura, K.; Nagata, M.; Castle, R.N. J. Heterocyclic Chem. 1974, 11, 503.
[17] Eicher, T.; Weber, J. L. Tetrahedron Lett. 1974, 15, 1381.
[18] Westerlund, A.; Gras, J. L.; Carlson, R. Tetrahedron 2001, 57, 5879.
[19] Lunsford, C.D. Patent 2,878,264, 1959; Chem. Abstr.1959, 53, 15096F.
[20] Casy, A.F.; Birnbaum, H.; Hall, G. H.; Everitt, B .J. J. Pharm. Pharmacol. 1965, 17, 157.
[21] Shen, R.-P; Pi, S.; Xia, W.; Zhao, G.; Wang, G.; Chen, X.; Gaoxiao Huaxue Gongcheng Xuebao 2003, 17, 438; Chem. Abstr. 2004, $140,95872 \mathrm{~g}$.
[22] Cavalla, J. F.; Davoll, J.; Dean, M. J.; Franklin, C. S.; Temple, D.M.; Wax, J.; winder, C.V. J. Med. Pharm. Chem. 1961, 4,1.
[23] Levisalles, J.; Rose, E. Bull. Soc. Chem. Fr. 1976, 11, 1947.
[24] Julia, M.; LeGoffie, F.; Igolen, J. Bull. Soc. Chim. Fr. 1969,
9, 3290; Chem. Abstr. 1970, 72, 21553J.
[25] Gensler, W. J.; Hu, M.W. J. Org. Chem. 1973, 38, 3848.
[26] Sheradsky, T.; Southwick, P. L. J. Org. Chem. 1965, 30, 194.
[27] Carelli, V.; Morlacchi, F. Ann. Chim. (Rome), 1964, 54, 1291; Chem., Abstr. 1965, 62, 11769h.
[28] Tomishige, M. Chem. Pharm. Bull. (Tokyo) 1961, 9, 818
[29] Sasaki, H. Nippon Kagaku Zasshi, 1955, 76, 35; Chem. Abstr. 1957, 51, 17878e.
[30] Moyer, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1985, 50, 5223.
[31] Blake, J.; Willson, C.D.; Rapoport, H. J. Am . Chem. Soc. 1964, 86, 5293.
[32] Ohsawa, T.; Ihara, M.; Fukumoto, K.; Kametani, T. J. Org. Chem. 1983, 48, 3644.
[33] Kuhn, R.; Osswald, G. Chem. Ber. 1956, 89, 1423.
[34] Geissman, T. A.; Waiss, A. C. J. Org. Chem. 1962, 27, 139.
[35] Wu, Y.H.; Feldkamp, R.F.; Lobeck, W.G. U.S. 3, 083, 208, 1963; Chem. Abstr. 1963, 59, 8709b.
[36] Miyamoto, M. Yakugaku Zasshi 1957, 77, 568; Chem. Abstr. 1957, 51, 16422e.
[37] Tatsuoka, S.; Tanaka, K.; Ueno, S.; Miyamoto, M.; Mitsuno, Y.; Uchibayashi ,S. Patent 10,509, 1960; Chem. Abstr. 1961, 55, 9429f.
[38] Ablordeppey, S. Y.; Lyles-Eggleston, M.; Bricker, B.; Zhang, W.; Zhu, X.; Goodmana, C.; Roth, B. L. Bioorg. Med. Chem. Lett. 2006, 16, 3219.
[39] Taylor, E. C.; Ahmed, Z.; Robkes, D. J.; Kempton, R. J. J. Org. Chem. 1991, 56, 5443.
[40] Taylor, E. C.; McDaniel, K.; Skotnicki, J. S. J. Org. Chem. 1984, 49, 2500.
[41] Taylor, E. C.; Fletcher, S. R.; Fitzjohn, S. J. Org. Chem. 1985, 50, 1010.
[42] Padwa, A.; Matzinger, M.; Tomioka, Y.; Venkatramanan, M. K. J. Org. Chem. 1988, 53, 955.
[43] Jernow, J.; Tautz, W.; Rosen, P.; Williams, T. H. J. Org. Chem. 1979, 44, 4213.
[44] Su, T.L.; Watanabe, K.A. J. Org. Chem. 1989, 54, 220.
[45] Southwich, P. L.; Madhav, R.; Filzgerald; J. A. J. Heterocycl. Chem. 1969, 6, 507.
[46] Southwich, P. L.; Sapper, D. I.; Pursglove, L. A. J. Am. Chem. Soc. 1950, 72, 4940.
[47] Southwich, P. L.; Dimond, H. L. J. Am. Chem. Soc. 1954, 76, 5667.
[48] Barvinok, M. S.; Kuprin, V. S.; Mazurek, V.V.; Semenov, G.I. zhur. Obshchei Khim. 1961, 31, 632; Chem. Abstr. 1961, 55,

22285q.
[49] Parpani, P.; Zecchi, G. J. Org. Chem. 1987, 52, 1417.
[50] Huang, Y.-L.; Lin, C.-F.; Lee, Y.-J.; Li, W.-W.; Chao, T.-C.; Bacherikov, V. A.; Chen, K.-T.; Chen, C.-M.; Su, T.-L. Bioorg. Med. Chem. 2003, 11, 145.
[51] Daidouji, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2005, 7, 1051.
[52] Black, D.C.; Boscacci, A. B. Aust. J. Chem., 1976, 29, 2511.
[53] Garst, M. E., Bonfiglio, J. N., Grudoski, D.A.; Marks, J. J. Org. Chem. 1980, 45, 2307.
[54] Cum, G.; Sindona, G.; Uccella, N.; Chim. Ind. (Milan), 1976, 58, 384; Chem. Abstr. 1977, 86, 290759.
[55] Lunsford, C. D.; Ward, J. W.; Pallottat, A. J.; Tusing, T. W.; Rose, E. K.; Murphey, R. S. J. Med. Pharm. Chem. 1959, 1, 73.
[56] Kizaki, N.; Yasohara, Y.; Nagashima, N.; Hasegawa, J. Journal of Molecular Catalysis B: Enzymatic Accepted 2007.
[57] Hanna, P. E.; Ahmed, A.E. J. Med. Chem. 1973, 16, 963.
[58] Bridgeman, E.; Cavill, J. L.; Schofield, D. J.; Wilkins, D. S.; Tomkinson, N. C. Tetrahedron Lett. 2005, 46, 8521.
[59] Nazarski, R.; Skolimowski, J.; Skowronski, R.; Pol. J. Chem. 1979, 53, 821; Chem. Abstr. 1979, 91, 211181 b .
[60] Davis, P.; Cavella, J. F.; Davoll, J. Brit. 862,513, 1961; Chem. Abstr. 1961, 55, 19950h.
[61] Zhang, Y.; Ran, C.; Zhou, G.; Sayre, L. M. Bioorg. Med. Chem. 2007, 15, 1868.
[62] Naylor, A.; Judd, D. B.; Lloyd, J. E.; Scopes, D. I. C.; Hayes, A. G.; P. J. Birch. J. Med. Chem. 1993, 36, 2075.
[63] Amer, F. A.; Hammouda, M.; El-Ahl, A.A.S.; Abdel-Wahab, B.F. J. Chin. Chem. Soc. 2007, 54, 1543.
[64] Lagrange, A.; Forestier, S.; Lang, G.; Luppi, B. Patent 3,931,269, 1990; Chem. Abstr. 1990, 113, 131982w.
[65] Hofmann, T. J. Agric. Food Chem. 1998, 46, 3902.
[66] Yamaji, M. Patent $01,301,655,1989$; Chem. Abstr.1990, 112, 198123q.
[67] Iwanami, S.; Takashima, M.; Hirata, Y.; Hasegawa, O.; Usuda, S. J. Med. Chem. 1981, 24, 1224.
[68] Iwanami, S.; Takashima, M. Patent 78 28,161, 1978; Chem. Abstr. 1978, 89, 43107v.
[69] Han, C.; Kim, S, J.; Kwak, H. S.; Lee, S. H.; Park, T, H.; Sung, Gil, Y. Patent 3,786, 2002; Chem. Abstr. 2005, 142, 113882 h.
[70] Hwang, G. H.; Kim, Y. D.; Nam, H.; Chang, J. H.; Shin, H. I.; Kim, Y. K., Lee, K. H.; Le, J. S.; Noh, H.K. Patent 92, 129, 2004; Chem. Abstr.2004, 141, 379800c.
[71] Theiry, V.; Guillaumet, G.; Andre, P. Patent 2,673,626, 1992; Chem. Abstr. 1993, 118, 81435a.
[72] Reznikov, V.A.; Kishnevetskaya, L.A.; Volodarskii, L. B.; Izv. Akad. Nauk. SSSR, Ser. Khim. 1990, 2, 395; Chem. Abstr. 1990, 113, 23597r.
[73] Aksanova, L.A.; Kucherova, N. F.; Sharkova; L.M. Khim. Geterotsikl. Soedin, 1969, 6, 995; Chem. Abstr. 1970, 72, 121398f.
[74] Sharkova, N. M.; Kucherova, N. F.; Aksanova, L. A.; Zagorevskii, V. A. Chem. Heterocycl. Compds. 1969, 5, 66.
[75] Smith, L. I.; Opie, J. W. Org. Syn. 1948, 28, 11.
[76] Kepler, J. A.; Wani, M. C.; McNauil, J. M.; Wall, M. E.; Levine S. G.
J. Org. Chem. 1969, 34, 3853.
[77] Wani, M. C.; Wall, M. E. J. Org. Chem. 1969, 34, 1364.
[78] Peng, H.; Kim, D.; Sarkaria, J. N.; Cho, Y.-S.; Abraham, R. T.; Zalkow, L. H. Bioorg. Med. Chem. 2002, 10, 167.
[79] Griss, G.; Hurnaus, R.; Grell, W.; Sauter, R.; Leitold, M.; Reichl, R.Patent 2, 521, 544, 1976; Chem. Abstr. 9717, 86, 72619g.
[80] Khan, M. A.; Ferreira, R. J. Heterocycles, 1977, 6, 1927.
[81] Amer, F. A.; Hammouda, M.; El-Ahl, A.A.S.; Abdel-Wahab, B.F. Synth. Commun. 2008, in press.
[82] Wille, E.; Luettke, W. Liebigs Ann. Chem. 1980, 12, 2039.
[83] Yamazaki, T.; Matoba, K.; Isomura, K.; Nagata, M.; Castle, R. N. J. Heterocyclic Chem. 1974, 11, 503.
[84] Tsutamune, T. Patent 02, 258, 763, 1990; Chem. Abstr. 1991, $114,185260 \mathrm{y}$.
[85] Naylor, A.; Judd, D. B.; Scopes D. I. C.; Hayes, A. G.; Birch, P. J. J. Med. Chem. 1994, 37, 2138.
[86] Plouvier, B.; Beatch, G. N.; Jung, G. L.; Zolotoy, A.; Sheng, T.; Clohs, L.; Barrett, T. D.; Fedida, D.; Wang, W. Q.; Zhu, J. J.; Liu, Y.;Abraham, S.; Lynn, L.; Dong, Y.; Wall, R. A.; Walker, M. J. A. J. Med. Chem. 2007, 50, 2818.
[87] Bouygues, M.; Medou, M.; Chermann, J. C.; Camplo, M.; Kraus, J. L. Eur. J. Med. Chem. 1998, 33, 445.
[88] Courcambeck, J.; Bihel, F.; DeMichelis, C.; Quelever, G.; Kraus, J. L. J. Chem. Soc., Perkin Trans. 1 2001, 12, 1421.
[89] Bouygues, M.; Medou, M.; Quelever, G.; Chermann, J.C.; Camplo, M.; Kraus, J. L. Bioorg. Med. Chem. Lett. 1998, 8, 277.
[90] Chu, D.T.; Li, Q. Patent 5, 252, 747, 1993; Chem. Abstr. 1994, 120, 298462h.
[91] Bird, P.; Ellsworth E. L.; Nguyen, D. Q.; Sanchez, J. P.; Showalter, H. D. H.; Singh, R.; Stier, M. A.; Tran, T. P.; Watson, B. M.; Yip, J. Patent 01 53,273 ,2001; Chem.Abstr. 2001, 135, 122511u.
[92] Grinter, T. J.; Howie, S. Patent PCT Int. Appl. WO 01 17, 961, 2001; Chem.Abstr. 2001, 134, 222700c.
[93] Cho, S; Cho, M.; Hayler, J. D. Patent $0118,002,2001$; Chem.Abstr. 2001, 134, 222702e.
[94] Iwanami, S.; Takashima, M.; Usuda, S. Patent 4, 210, 660, 1980; Chem. Abstr. 1980, 93, 220583c.
[95] Watanabe, K.A. Patent 4, 925, 939, 1990; Chem. Abstr. 1990, 113, 152462s.
[96] Edwards, P. N.; Large, M.S. Patent 586,229, 1994; Chem. Abstr. 1994, 121, 108501v.
[97] Tamazawa, K.; Kojima, T.; Arima, H.; Murakami, Y.; Isomura, Y.; Okada, K.; Takanobu, M.; Takenaka, T. Patent 160, 451, 1985; Chem. Abstr. 1987, 106, 4763f.
[98] The Merk Index of chemicals and drugs, $9^{\text {th }}$ ed., Merk and Co. Inc. Rahway, N.J., U.S.A. 1976, Item no. 1031.
[99] Boswell, R.F.; Duncan, R.L. Patent 4, 139, 620, 1979; Chem. Abstr. 1979, 90, 168445f.
[100] Baker, R.; Bourrain, S.; Castro, P .J.; Chambers, M. S.; Guiblin, A. R.; Hobbs, S.C.; Jelley, R. A.; Madin, A.; Matassa, V.G. Patent 96 04,274, 1996; Chem. Abstr. 1996, 125, 58520k.
[101] Effland, R. C.; Davis, L.; Klein, J. T. U.S.4, 268, 515, 1981; Chem. Abstr. 1981, 85, 150474h.
[102] Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745.
[103] Kraus, J. L.; Bouygues, M.; Courcambeck, J.; Chermann, J. C. Bioorg. Med. Chem. Lett. 2000, 10, 2023.
[104] Quelever, G; Bouygues, M; Kraus, J.-L. J. Chem. Soc. Perkin Trans1 2002, 9, 1181.
[105] Nadler, W.; Pupowicz, D. Patent 2005 82,848 100,773, 26, 2004; Chem. Abstr. 2005, 143, 267237j).
[106] Halazy, S.; Schwarz, M.; Quattropani, A.; Thomas, R.; Baxter A.; Scheer, P. Patent 01 72,705, 2001; Chem. Abstr. 2001, 135, 288686e.
[107] Halazy, S.; Schwarz, M.; Quattropani, A.; Thomas R.; Bomburn, A. Patent 01 106,033, 2001; Chem. Abstr. 2001, 135, 303763y.
[108] Jorand-Lebrun, C; Dorbais, J.; Quattropani, A; Schwarz, M.; Valognes, D. Patent 5, 249, 2004; Chem. Abstr. 2004, 140, 93917 b .
[109] Schwarz, M.; Jorand-lebrun, C.; Valognes, D. Patent 2004 76,407, 2004; Chem. Abstr. 2004, 141, 24336y.
[110] Lee, D.; Kwon, Y; Kim, Y.; Rhee, C. Patent 02 18,336, 2002; Chem. Abstr. 2002, 136, 216642k.
[111] Beatch, G. N.; Choi, L. S. L.; Jung, G.; Liu, Y.; Plouvier B.; Wall, R.; Zhu, J.; Zolotoy, A.; Barrett, A. G.M. Patent PCT Int. Appl. WO 2004 99,137, 2004; Chem. Abstr. 2004, 141, 424107v.

